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Exposure to air pollution during pregnancy has been suggested to be a risk factor for preterm birth; however,
epidemiologic evidence remains mixed and limited. The authors examined the association between ambient levels
of particulate matter<2.5 lm in aerodynamic diameter (PM2.5) and the risk of preterm birth in North Carolina during
the period 2001–2005. They estimated the risks of cumulative and lagged average exposures to PM2.5 during
pregnancy via a 2-stage discrete-time survival model. The authors also considered exposure metrics derived from
1) ambient concentrations measured by the Air Quality System (AQS) monitoring network and 2) concentrations
predicted by statistically fusing AQS data with process-based numerical model output (the Statistically Fused Air
and Deposition Surfaces (FSD) database). Using the AQS measurements, an interquartile-range (1.73 lg/m3)
increase in cumulative PM2.5 exposure was associated with a 6.8% (95% posterior interval: 0.5, 13.6) increase in
the risk of preterm birth. Using the FSD-predicted levels and accounting for prediction error, the authors also found
significant adverse associations between trimester 1, trimester 2, and cumulative PM2.5 exposure and preterm
birth. These findings suggest that exposure to ambient PM2.5 during pregnancy is associated with increased risk of
preterm birth, even in a region characterized by relatively good air quality.

air pollution; particulate matter; premature birth; survival analysis

Abbreviations: AQS, Air Quality System; EPA, Environmental Protection Agency; CMAQ, Models-3/Community Multiscale Air
Quality; FSD, Statistically Fused Air and Deposition Surfaces; PI, posterior interval; PM2.5, particulate matter <2.5 lm in aero-
dynamic diameter.

Editor’s note: An invited commentary on this article
appears on page 108, and these authors’ response appears
on page 111.

Preterm birth is associated with significant neonatal morbid-
ity andmortality, as well as long-term health and developmental
problems (1–5). In 2006, the short-term costs associated with
preterm birth were estimated at over $51,000 per infant and
approximately $26 billion for the United States annually (6).
There is a growing interest in studying the association
between prenatal exposure to environmental pollutants
and preterm birth; however, in recent reviews, investigators
concluded that the epidemiologic evidence remains limited
and inconsistent (7, 8).

In this paper, we examine the association between ambient
levels of particulate matter<2.5 lm in aerodynamic diameter
(PM2.5) and the risk of preterm birth in North Carolina. The
PM2.5 mass includes a chemically diverse mixture of carbon
compounds, trace metals, and ionic molecules that typically
arise from combustion sources such as vehicle emissions,
industrial operations, and power generation. High levels of
ambient PM2.5 have been associated with increased risk of
mortality (9, 10), hospital admissions (11), and various car-
diopulmonary diseases in susceptible populations such as
children and the elderly (12, 13).

Here we take a discrete-time survival approach for estimat-
ing the associations of long- and short-term PM2.5 exposure
with preterm birth. Gestational age is viewed as time-to-event
data by defining an at-risk window (e.g., the 27th–36th weeks
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of gestation) in which preterm birth can occur. It is motivated
by the challenge of defining exposure windows that depend
on gestational age. For example, consider average PM2.5

levels during the third trimester (from the 27th week of ges-
tation to birth) or the entire pregnancy. Bias in risk estimates
can arise because the duration of exposure differs between
preterm births and full-term births. With the survival ap-
proach, we align the data such that preterm and full-term
births are compared with each other only during the time
window in which the fetus is at risk of being born preterm.
Therefore, we can avoid the above bias by allowing the
third trimester and total exposures to vary as each preg-
nancy progresses in time.

The use of time-varying exposures also allows us to exam-
ine associations with short-term exposure to air pollution. In
a logistic regression model that treats prematurity as a binary
outcome, defining short-term exposure prior to delivery may
lead to bias in the risk estimates. For example, consider a full-
term 39-week pregnancy in which the mother experienced
high exposure in week 38. If acute exposure is defined as
the week before delivery, this pregnancy will contribute to
a protective association with air pollution even though the
fetus is not at risk of being born preterm at week 38. Using
only the week prior to birth also discards data from weeks
earlier, which are also informative with regard to the acute
effect. The time-series design overcomes this bias by aggre-
gating preterm births and at-risk ongoing pregnancies on each
day (14, 15). With the survival approach, we estimate the
short-term effect by considering lagged exposure metrics as
time-varying covariates. Moreover, we are able to utilize
the full spatial and temporal contrast in PM2.5 levels while
accounting for individual-level covariates.

The ability to link publicly available birth record data and
air quality measurements from monitoring networks has
encouraged investigators to conduct many population-based
studies. However, they often encounter difficulties in exposure
assessment when the monitoring networks do not provide suf-
ficient spatial-temporal resolution to define exposures over
specific pregnancy windows. For example, the relatively sparse
PM2.5 network typically records concentrations only every
third day or every sixth day. One important innovation in
this paper is the use of a recently created, publicly available
database of ambient PM2.5 levels from the Environmental
Protection Agency (EPA). The EPA’s Statistically Fused Air
and Deposition Surfaces (FSD) database (http://www.epa.
gov/esd/land-sci/lcb/lcb_sfads.html) includes predicted daily
PM2.5 concentrations obtained by fusing observed PM2.5 data
from the Air Quality System (AQS) network and outputs from
the Models-3/Community Multiscale Air Quality (CMAQ)
model (16). While the CMAQmodel provides higher spatial
and temporal resolution than the AQS network, its outputs are
known to exhibit bias, particularly for capturing short-term
variation between days (17). The FSD database attempts to
adjust the bias in the CMAQ model using the observed PM2.5

concentrations from the AQS network.
In our analysis, we calculate PM2.5 exposure metrics derived

from both the AQS and the FSD database. To our knowledge,
this is the first large-scale population study that has utilized
the FSD database to examine the adverse association of air
pollution with health. Because the databases have different

limitations, our goal is not to determine which database is
more appropriate in studies of birth outcomes and air pollu-
tion but to examine the robustness of risk estimates across
air quality databases.

MATERIALS AND METHODS

Study population

Birth data were obtained from the North Carolina Detailed
Birth Record database. We considered pregnancies with ges-
tational lengths of 27–42 weeks in which conception had
occurred between 2001 and 2005. We used the clinical
estimate of gestation in completed weeks to back-calculate
the date of conception. We restricted the analysis to singleton
livebirths with birth weights greater than 400 g and no con-
genital anomalies.We further restricted the data set to mothers
aged 15–44 years who declared themselves non-Hispanic
white, non-Hispanic black, or Hispanic.

Maternal residential addresses at the time of delivery were
geocoded to the street block level using ArcGIS 9.3 (ESRI,
Redlands, California). We used the 2006 Topologically In-
tegrated Geographic Encoding and Referencing (TIGER)
street data from the US Census Bureau as the spatial reference
file. The geocoding success rate was 83% because of invalid,
missing, or unmatched addresses.

Exposure assessment

We considered 2 databases of ambient PM2.5 levels to con-
struct weekly average exposure over the course of pregnancy.
First, PM2.5 data were obtained from the EPA’s AQS data-
base. Each geocoded birth was linked to the closest monitor
within a buffer area with a 12-km radius. A 36-km buffer
radius was also considered in a sensitivity analysis. Because
AQS monitors exhibit a missing data structure that varies
across days and across monitors, we handled missing data as
follows. We first constructed the 1-week average exposure
for each gestational week with at least 1 PM2.5 measurement.
We defined a 1-week exposure for gestational week t by av-
eraging PM2.5 concentrations during the 7 days leading up to
the date that week t was completed. For weeks without any
PM2.5 measurements, the average of the weeks before and
after that week was used as a proxy for the exposure concen-
tration during that week. Births with 2 or more consecutive
missing weeks were excluded.

Second, predicted PM2.5 levels were obtained from the
EPA’s FSD database. Predictions are based on a Bayesian
space-time hierarchical model (18) that fuses monitoring
PM2.5 data from AQS and outputs from the CMAQ model.
The FSD database provides predictive mean values and stan-
dard deviations for daily PM2.5 concentration averaged over
contiguous 12-km by 12-km grid cells. To account for
uncertainty in predicted PM2.5 levels, we imputed 10 sets
of daily PM2.5 levels by treating the posterior predictive
distributions as independent normals across days and grid
cells. Finally, we linked each birth to the associated FSD
grid cell and calculated 1-week average exposure without
missing values.
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Statistical analysis

We viewed gestational age as time-to-event data and
estimated the risk of PM2.5 exposure during pregnancy via
a 2-stage discrete-time survival model. In this design, each
pregnancy enters the risk set at the 27th week of gestation
and is followed until either 1) a birth occurs before the 37th
week (preterm) or 2) it reaches the 37th week and a full-term
birth is expected. Full-term births are censored at week 36,
and no censoring occurs within the at-risk window.

Because of the large study cohort and geographic region, the
analysis was conducted in 2 stages (19). First, we fitted
a discrete-time survival model with a logistic link and
time-varying covariates (20, 21). Specifically, let Yit denote
the indicator of whether a birth occurs during gestational
week t for pregnancy i. We modeled

logitP ðYit ¼ 1jno birth before week tÞ ¼ ht þ b Zit;

where ht represents the week-specific intercepts and b repre-
sents the coefficients for covariate vector Zit. We controlled
for the following variables: maternal age (15–19, 20–24,
25–29, 30–34, 35–39, or 40–44 years), maternal education
(<9, 9–11, 12, 13–15, or>15 years), ethnicity, and indicators
for tobacco use during pregnancy, marital status, firstborn
birth order, and infant sex. To control for unmeasured tem-
poral confounders, we included season of conception (winter
(December–February), spring (March–May), summer (June–
August), or fall (September–November)) and year of concep-
tion. We also considered a smooth function of conception
date modeled using natural cubic splines with degrees of
freedom ranging from 2 to 6 per year. The preterm birth model
assumed that the risk of PM2.5 was constant across the at-risk
window. For the 6 most populous counties in North Carolina,
we considered including terms for interaction between the
exposure and each gestational week simultaneously. We then
performed a joint hypothesis test with all week-specific risks
being identical as the null hypothesis.

At the second stage, county-specific log odds ratios were
combined by assuming the unobserved true risks to be nor-

mally distributed with mean l (average risk across counties)
and variance r2 (between-county variability). For the FSD
exposures, we combined the results by pooling the posterior
samples of l after carrying out independent analysis for each
imputed data set. We also relaxed the assumption that county-
specific risk estimates are independent by including additional
spatial random effects that follow a conditional autoregressive
model (22). All statistical analysis was conducted using R,
version 2.8.0 (23).

We investigated average PM2.5 exposure defined over 7
pregnancy windows.We considered 3 exposurewindows with
fixed lengths: 1) trimester 1 (weeks 1–13); 2) trimester 2
(weeks 14–27); and 3) 6 weeks since conception. Given that
a pregnancy completed gestational week t, we also consid-
ered 4 time-varying exposures: 1) trimester 3 (week 27 to t);
2) cumulative (week 1 to t); 3) a 6-week lag (week t� 5 to t);
and 4) a 1-week lag (week t).

In order to estimate the baseline hazard for each gestational
week, counties with fewer than 500 births were excluded
(<1% of total births). For counties with a small population,
the pregnancies entered the at-risk window later than the
27th week because there were insufficient data to estimate
the county-specific baseline hazards for the earlier weeks.

All geocoded births were linked to an FSD grid cell, but
only a subset of births was linked to an AQS monitor. Since
AQS monitors are preferentially placed in urban locations
where nonattainment of federal standards is likely to occur,
we conducted 4 independent analyses for 3 different subsets
of the study population, as follows. First, we considered all
available births and used PM2.5 exposure derived from the
FSD database (the FSD full cohort). We then considered only
the births linked to an AQS monitor within a 12-km radius
(the AQS buffer cohort) and used exposure measures derived
from either the AQS or the FSD database. This restricted study
population also allowed us to assess the correlation between
exposures calculated from the 2 PM2.5 databases. Because
not all births in a county were linked to an AQS monitor, we
also considered a fourth analysis using the FSD exposures
for counties with birth records linked to an AQS monitor (the
FSD county cohort). Note that these cohorts are not mutually

0 50 100 km
N

Figure 1. Counties included in a study of levels of particulate matter<2.5 lm in aerodynamic diameter (PM2.5) and preterm birth risk and locations
of nearby Air Quality System (AQS) PM2.5 monitors (�), North Carolina, 2001–2005. Counties that contained at least 500 births linked to an AQS
monitor within a 12-km radius are indicated by thick borders. Counties that contained at least 500 births linked to a grid cell of the Statistically Fused
Air and Deposition Surfaces database are shaded.
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exclusive: ‘‘AQS buffer’’ is a subset of ‘‘FSD county,’’ and
‘‘FSD county’’ is a subset of ‘‘FSD full.’’ Figure 1 shows the
locations of the AQS PM2.5 monitors and the counties within
each cohort.

RESULTS

The analysis included a total of 80 counties linked to an
FSD grid cell. Among these, 25 counties had at least 500 birth
records linked to an AQS monitor. The average distance be-
tween the maternal residence and the closest AQS monitor

was 5.87 km. Table 1 shows the characteristics of the 3 study
populations. Births to women living near AQS monitors had
higher proportions of mothers who were younger, unmarried,
and Hispanic or non-Hispanic black and higher proportions
of mothers with fewer years of education compared with the
other 2 study cohorts.

The hazard of preterm birth tended to increase by gesta-
tional age. Web Figure 1 (presented on the Journal’sWeb site
(http://aje.oxfordjournals.org/)) shows the baseline weekly
hazards (ht) for the 6 most populous counties. Across the
FSD full cohort, higher risks of preterm birth were observed

Table 1. Characteristicsa of Participants in a Study of PM2.5 Levels and Risk of Preterm Birth, by Study Cohort,

North Carolina, 2001–2005

Study Cohort

AQS Bufferb FSD Countyc FSD Fulld

No. % No. % No. %

Total no. of counties 25 25 80

Total no. of births 161,078 306,606 453,562

Preterm birth 8.8 8.6 8.6

Male sex 51.3 51.1 51.1

Firstborn birth order 42.4 42.0 41.4

Ethnicity

Non-Hispanic white 52.1 58.1 61.6

Non-Hispanic black 29.5 25.5 23.4

Hispanic 18.4 16.2 15.0

Maternal education, years

<9 7.3 6.6 6.6

9–11 15.6 14.2 15.2

12 27.2 26.1 28.4

13–15 20.8 21.3 22.1

>15 29.1 31.8 27.7

Maternal age, years

15–19 11.2 10.1 11.0

20–24 27.5 25.2 26.5

25–29 26.4 26.9 27.0

30–34 22.6 24.5 23.1

35–39 10.4 11.2 10.3

40–44 1.9 2.1 1.9

Tobacco use during pregnancy 9.8 10.3 11.9

Not married 39.0 35.5 35.6

Season of conception

Winter (December–February) 25.5 25.1 25.1

Spring (March–May) 24.9 24.4 24.5

Summer (June–August) 24.3 24.9 24.8

Fall (September–November) 25.3 25.6 25.6

Abbreviations: AQS, Air Quality System; FSD, Statistically Fused Air and Deposition Surfaces; PM2.5, particulate

matter <2.5 lm in aerodynamic diameter.
a Based on the availability of PM2.5 measurements from the AQS or the FSD database.
b Births linked to an AQS monitor within a 12-km radius.
c Births occurring in counties with AQS monitors and linked to an FSD grid cell.
d Births linked to an FSD grid cell.
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for older, unmarried, non-Hispanic black mothers and among
mothers who had less education or reported tobacco use. First-
born babies were also more likely to be preterm. The odds ratio
estimates and 95% confidence intervals are given in Web
Table 1. Except for infant sex, the above characteristics were
also associated with levels of PM2.5 exposure (Web Tables 2
and 3).

Table 2 gives the median values and interquartile ranges
for the exposure metrics. Here we used the predicted levels
from FSD. To describe time-varying cumulative exposure, we
used the average exposure over the entire pregnancy. Similarly,
we used the average exposure over weeks 1–6 and week 27
to describe the distribution of 6-week lag and 1-week lag
exposures, respectively. Within-county variation in exposure
measured by interquartile range was highest for weekly
exposure and lowest for total exposure because of different
exposure window lengths.

Table 3 summarizes county-specific correlations between
exposures derived from the AQS and the FSD database. We
found minor heterogeneity across the counties. More than
half of the counties had correlations for trimester exposures
above 0.80. We also observed that the correlation between
AQS and FSD exposures increased from weekly exposure to
trimester exposures, suggesting that both databases were cap-

turing similar trends in PM2.5 level on a longer time scale. The
decrease in correlation for exposure over the entire pregnancy
as compared with trimester exposure can be attributed to the
strong negative correlation between trimester 1 and trimester 3
introduced by the seasonality of PM2.5 ambient concentrations.

Figure 2 shows the statewide average log odds ratio esti-
mates (and 95% posterior intervals) for the risk of preterm
birth per interquartile-range increase in each of the PM2.5

exposure metrics.We used the interquartile range for the AQS
buffer cohort, given in Table 3. Among births towomen living
within a 12-km buffer of an AQS monitor, an interquartile-
range (1.73 lg/m3) increase in cumulative average PM2.5

exposure was associated with a 6.8% (95% posterior interval
(PI): 0.5, 13.6) increase in the risk of preterm birth. Using
metrics derived from the FSD database, the corresponding
increase in risk was 4.1% (95% PI: 0.9, 7.3) for the same
study cohort. The estimates were similar to those obtained
using a buffer with a 36-km radius (Web Table 4).

We found the statewide estimates to be robust against the
choice of AQS or FSD exposures and between different study
cohorts. Using the FSD exposure metrics, across 80 counties,
we estimated that each interquartile-range increase in trimes-
ter 1, trimester 2, and cumulative average PM2.5 exposure was
associated with a 2.8% (95% PI: 0.9, 4.7), 3.9% (95% PI:
1.0, 6.8), and 3.5% (95% PI: 0.8, 6.3) increase in the risk of
preterm birth, respectively. The posterior intervals associated
with FSD exposures were narrower because of the consid-
erable increase in sample size. Including additional spatial
random effects produced similar estimates. For the 6 most
populous counties, we did not find evidence that the risks
varied between gestational weeks 27 and 36. The estimates
were also found to be robust after controlling for temporal
trends using natural cubic splines (Web Figure 2). Moreover,
the model with indicators for conception season and concep-
tion year consistently had the smallest Akaike and Bayesian
information criteria for all 7 exposure metrics.

DISCUSSION

We conducted a statewide analysis to estimate the asso-
ciation between ambient PM2.5 levels and the risk of preterm
birth in North Carolina. We found statistically significant

Table 2. Median Values (lg/m3) for Exposure Metrics in a Study of

PM2.5 Levels and Risk of Preterm Birth, North Carolina, 2001–2005

Study Cohort

AQS Buffer FSD County FSD Full

Total 13.88 (1.73)a 15.25 (2.25) 15.12 (2.51)

Trimester 1 13.18 (3.85) 14.81 (4.14) 14.68 (4.22)

Trimester 2 13.16 (3.83) 14.63 (4.16) 14.51 (4.22)

Trimester 3 13.19 (3.88) 14.67 (4.26) 14.56 (4.32)

Weeks 1–6 13.13 (4.06) 14.94 (4.61) 14.80 (4.71)

Week 27 12.97 (6.05) 14.16 (6.40) 14.03 (6.43)

Abbreviations: AQS, Air Quality System; FSD, Statistically Fused

Air and Deposition Surfaces; PM2.5, particulate matter <2.5 lm in

aerodynamic diameter.
a Numbers in parentheses, interquartile range.

Table 3. County-Specific Correlations Between PM2.5 Exposure Metrics Derived From the AQS

and the FSD database, North Carolina, 2001–2005a

Minimum
Quartile 1

(25th Percentile)
Median

Quartile 3
(75th Percentile)

Maximum

Total 0.25 0.61 0.67 0.77 0.86

Trimester 1 0.42 0.72 0.83 0.85 0.89

Trimester 2 0.44 0.72 0.82 0.86 0.89

Trimester 3 0.37 0.73 0.83 0.86 0.90

Weeks 1–6 0.28 0.61 0.77 0.78 0.85

Week 27 0.20 0.58 0.63 0.69 0.79

Abbreviations: AQS, Air Quality System; FSD, Statistically Fused Air and Deposition Surfaces;

PM2.5, particulate matter <2.5 lm in aerodynamic diameter.
a Statistical summaries were calculated across 30 counties in the AQS buffer cohort.

Fine Particle Air Pollution and Preterm Birth 95

Am J Epidemiol. 2012;175(2):91–98

 at E
nvironm

ental Protection A
gency L

ibrary on D
ecem

ber 14, 2012
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://www.aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwr403/-/DC1
http://www.aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwr403/-/DC1
http://www.aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwr403/-/DC1
http://www.aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwr403/-/DC1
http://www.aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwr403/-/DC1
http://www.aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwr403/-/DC1
http://aje.oxfordjournals.org/


adverse associations for PM2.5 levels during the first trimester,
during the second trimester, and for the cumulative average.
The risk estimates were robust between observed and predicted
PM2.5 levels. Considerable effort is required for geocoding
birth records in studies of birth outcomes and environmental
pollutants. Most studies of preterm birth and air pollution
have been limited to urban communities with high population
density and high levels of air pollution (14, 24–28). All of the
counties in our study are currently in compliance with the

PM2.5 National Ambient Air Quality Standard (http://www.
epa.gov/air/criteria.html) as of October 2009.

The reported risk estimates for the relation between preterm
birth and long-term PM2.5 exposure are consistent with pre-
vious findings. In a study in Vancouver, Canada, Brauer et al.
(29) found an odds ratio of 1.06 (95% confidence interval:
1.01, 1.11) per 1-lg/m3 increase in PM2.5 exposure for the
overall pregnancy. For first-trimester exposure, Ritz et al. (28)
found an odds ratio of 1.10 (95% confidence interval: 1.01,

Log Odds Ratio for Preterm Birth per IQR Increase

–0.05 0 0.05 0.1 0.15 0.2

Cumulative

Trimester 1

Trimester 2

Trimester 3

Weeks 1–6

6-week lag

1-week lag

AQS buffer

FSD county
FSD full

AQS buffer

FSD county
FSD full

AQS buffer

FSD county
FSD full

AQS buffer

FSD county
FSD full

AQS buffer

FSD county
FSD full

AQS buffer

FSD county
FSD full
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FSD county
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(AQS)
(FSD)

(AQS)
(FSD)
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(FSD)

(AQS)
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(AQS)
(FSD)
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(FSD)

(AQS)
(FSD)

Figure 2. Statewide average odds ratio estimates (and 95% posterior intervals) for preterm birth per interquartile-range (IQR) increase in different
metrics of exposure to particulate matter <2.5 lm in aerodynamic diameter, North Carolina, 2001–2005. Estimates from 3 different study cohorts
are presented side-by-side: 1) AQS buffer, births to women living within a 12-km radius of an Air Quality System (AQS) monitor; 2) FSD county,
births occurring in counties with AQS monitors and linked to a Statistically Fused Air and Deposition Surfaces (FSD) grid cell; and 3) FSD full, all
births linked to an FSD grid cell. For the FSD county and FSD full cohorts, exposures were derived from the FSD database. For the AQS buffer
cohort, exposures were derived from the AQS or FSD database indicated in parentheses. Horizontal bars, 95% posterior interval.
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1.20) for pregnancies exposed to PM2.5 concentrations greater
than 21.36lg/m3 versus those exposed to less than 18.63lg/m3

in Southern California. In a similar study using a matched-
case control design, Huynh et al. (27) report an odds ratio of
1.21 (95% confidence interval: 1.12, 1.30).

We did not find a significant association between short-term
exposure to PM2.5 and preterm birth in North Carolina. Several
studies have found a significant association between short-
term PM2.5 exposure and preterm birth (14–15, 30). However,
in time-series analyses carried out in London, United Kingdom
(31) and Shanghai, China (25), no association was found for
weekly or daily levels of particulate matter less than 10 lm in
aerodynamic diameter. The low PM2.5 levels in North Carolina
may not be high enough to induce an acute effect.

While multiple studies have shown an association between
birth outcomes and maternal exposure to particulate matter,
themechanisms bywhich particulate matter affects pregnancy
length and fetal growth are not well documented andmay vary
by timing of exposure (32). Biologically plausible pathways
by which particulate matter may affect pregnancy outcomes
include the inflammatory response, systemic oxidative stress,
and placental dysfunction. Maternal exposure to particulate
matter air pollution triggers inflammation that could increase
maternal susceptibility to infections, which have been linked
to uterine contractions and the initiation of preterm labor
(33, 34). The component chemicals of particulate matter can
lead to oxidative stress, resulting in DNA damage that has
been linked to restricted fetal growth and lower birth weights
(33–35). Inflammation and oxidative stress may also affect
birth outcomes by causing vasoconstriction, elevating blood
pressure and exacerbating maternal hypertension, a risk fac-
tor for preterm birth (33). Particulate matter may also restrict
fetal growth by causing placental dysfunction. Reduced pla-
cental perfusion may result from the inflammation (32, 33)
and increased blood viscosity (34) associated with maternal
exposure to particulate matter air pollution. Particulate matter
may also directly impair placental function by binding recep-
tors of key placental growth factors (32).

Our analysis had several strengths. First, using the same
regression model and confounding controls, we were able to
estimate the association of both long-term and short-term
exposures to ambient PM2.5. As Bosetti et al. (7) indicated,
investigators in previous studies often did not report results
for all exposure metrics, resulting in the possibility of selec-
tive reporting and difficulty in synthesizing findings. Second,
we considered an alternative source of ambient PM2.5 levels
from the EPA FSD database to overcome spatial and temporal
misalignment. Third, we employed a time-to-event approach
that allowed us to efficiently examine long- and short-term
exposures. The potential bias associated with treating time-
varying exposures as fixed windows in a logistic regression
setting is likely to depend on the length of exposure, the
seasonality in ambient air pollution levels, and the seasonality
in conception. Finally, the North Carolina birth records contain
detailed maternal information, specifically data on maternal
smoking, which is an important risk factor for adverse birth
outcomes.

Extensions of the time-to-event model offer several oppor-
tunities for future studies. First, by considering interactions
between exposure and gestational age, one can examine how

the risk associated with PM2.5 changes across the at-risk
window (early preterm birth vs. late preterm birth). Second,
multiple exposures of different time scales (e.g., cumulative
and 4-week lag) can be included simultaneously to examine
the relative toxicity of long-term exposures versus shorter
exposures. Another way is to exploit the exposure structure
with time-varying covariates that capture the relative propor-
tions of exposure during different pregnancy windows. Finally,
a 2-stage approach with the ability to borrow information
across spatial units in estimating model coefficients may be
beneficial, especially for counties with small sample sizes.

This study had several limitations. The first challenge arises
from assigning exposure measures to each individual preg-
nancy and the associated measurement error. We assumed
that ambient PM2.5 concentrations were spatially homoge-
neous within a small geographic area: a 12-km radial buffer
around each monitor, or a 12-km by 12-km grid cell. We also
assumed that the mothers did not move during pregnancy.
Finally, ambient levels were used as a surrogate measure for
actual personal PM2.5 exposure.

When comparing birth outcomes across space and time,
the possibility of confounding at both the individual and neigh-
borhood levels is well recognized (36). Examples of known
risk factors for which data are not available from birth cer-
tificates include parental socioeconomic status, the residential
built environment, and amount of physical activity during
pregnancy. In our study, maternal characteristics were also
associated with levels of PM2.5 exposure, and potential residual
confounding remained because of the unreliability of birth
certificates (37). Confounding by secular trends and season-
ality in preterm birth presents another challenge, particularly
because the exposures of interest are averaged across long
pregnancy windows. While there has been considerable work
in air pollution epidemiology to address unmeasured con-
founders (38, 39), new methods are needed for studies of
preterm birth and air pollution.

Overall, our findings suggest that exposure to ambient PM2.5

during pregnancy is associated with increased risk of preterm
birth, even in regions characterized by relatively good air
quality. However, the critical window of exposure warrants
further investigation.
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